

FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRONICA

SILABO ANÁLISIS DE SISTEMAS DE POTENCIA II

I. INFORMACION GENERAL

1.1 Asignatura : Análisis de Sistemas de Potencia II

1.2 Codigo: ES8101.3 Condición: Obligatorio

1.4 Pre -Requisito : IA701 Análisis de Sistemas de Potencia I

1.5 N° de Horas de Clase : 05(03 Teoría, 02 Laboratorio)

1.6 N° de Créditos: 051.7 Ciclo: VIII1.8 Semestre Académico: 2019B

1.9 Profesor : Ing. Manuel Juan Casas Salazar

II. SUMILLA

La asignatura es de naturaleza teórica, práctica y experimental. La permite al alumno modelar, simular y resolver casos de estado estacionario del sistema de potencia eléctrico, así como su operación confiable y económica del sistema. La asignatura se desarrolla mediante las unidades de métodos de Newton-Raphson; método de "dip" de reactancia; confiabilidad y calidad de energía; y simulación del sistema eléctrico y electrónico.

III. COMPETENCIAS Y CAPACIDADES

3.1 COMPETENCIAS GENERALES

El curso de educación intenta proveer el conocimiento y habilidades específicas siguientes:

- Entendimiento teórico básico detrás de estudios de estado estacionario de sistemas de potencia.
- Aprender cómo el estado estacionario afecta la operación del sistema de potencia.
- Entendimiento de las consecuencias de contingencias del sistema y qué medidas de mitigación puede ser aplicada.
- Entendimiento acerca de técnicas de modelamiento de software comercial (DigSilent, EMTP), desempeño de simulación é interpretación de los resultados.

3.2 COMPETENCIAS DE LA ASIGANTURA

Desarrolla capacidades y destrezas para la operación y planeamiento del Sistema Eléctrico de Potencia (SEP), aplicando teorías fundamentales y el desarrollo de métodos de análisis del SEP. La herramienta computacional es el software DigSilent Power Factory.

COMPETENCIA ESPECÍFICAS CAPACIDADES Y ACTITUDES

0.4.0.4.0.10.4.0.5.0

OCHERTENIOLE

COMPETENCIA	CAPACIDADES	ACTITUDES
Explica el estado	Desarrollo de ecuaciones de segundo	Desempeño de las variables
permanente del sistema de	orden sin considerar el momento de	de tensión y ángulos de barras
potencia y sus	inercia de las máquinas con el circuito.	del sistema.
consecuencias sobre		
riesgos del equipo.		
Aplica y explica diferentes	Desarrollo de métodos de Newton-	Entendimiento de factores de
métodos para analizar	Raphson de ecuaciones de corriente y de	compensación de líneas,
estado contingente del	ecuaciones de potencia (clásico).	criterios de sincronización
sistema de potencia.		
Crea modelos matemáticos	Uso de librerías de software comercial	Verificación de efectividad del
para análisis de estabilidad		modelo en función del tiempo.

4 OTITUDEO

FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRONICA

transitoria y dinámica sistemas de potencia	de		
Análisis de pérdidas transmisión	de	Uso de software para valorar las pérdidas del sistema.	Valorización de la energía eléctrica como fuente del proceso industrial.

IV. PROGRAMACIÓN POR UNIDADES DE APRENDIZAJE

N° UNIDAD	NOMBRE DE LA UNIDAD	DURACION E SEMANAS	N	FECHA DE INICIO	FECHA DE TERMINO
1	Método de Newton-Raphson sobre	2		12/08/2019	23/08/2019
	flujos de carga.				
II	Aplicación de solución de flujos de carga	2		26/08/2019	06/09/2019
III	Análisis de armónicos sobre sistemas de potencia	2		16/09/2019	27/09/2019
IV	Capacidad de solucionar ecuaciones	2		30/09/2019	11/10/2019
V	Confiabilidad y calidad de energía-Parte	2		14/10/2019	25/10/2019
VI	Confiabilidad y calidad de energía-Parte II	2		28/10/2019	08/11/2019
VII	Simulación de sistemas eléctricos-Parte	2		11/11/2019	22/11/2019
VIII	Simulación de sistemas eléctricos-Parte II	2		25/11/2019	13/12/2019
IX	Examen sustitutorio	1		16/12/2019	20/12/2019

PROGRAMACION DE CONTENIDOS

	UNIDAD I: Método de Newton-R	aphson sobre flujos de carga.			
	CAPACIDAD: Ca	pacidad de análisis y sír	ntesis.		
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	CONTENIDO ACTITUDINAL	INDICADORES	TOTAL HORAS
1	Definición de tipos de barras Inicialización de parámetros de barras Modelo de componentes del sistema de potencia	Realiza la formación de la matriz de admitancia del sistema	Re-conocimiento de elementos no-diagonales como enlaces entre componentes y elementos diagonales como enlaces entre componentes pertenecientes a determina diagonal.	Obtiene propiedades y características de la matriz de admitancia	5 (3 Teoría 2 laboratorio)
2	Ecuaciones de potencia activa y reactiva de inyección en barras	Realiza operaciones para determinar las potencias de inyección en barras-basados en la matriz de admitancia.	Reconoce las magnitudes de potencias de inyección para cada iteración de solución del sistema de potencia.	Representa soluciones para cálculos de errores.	5 (3 Teoría 2 laboratorio)
3	J Vector de errores en Newton-Raphson	Resuelve el valor absoluto entre las potencias de inyección de barras y las potencias especificadas por carga y generación de barras.	Reconoce que los errores en Newton- Raphson sean menores de 0.1kW y 0.1kVAr.	Soluciona el vector de errores.	5 (3 Teoría 2 laboratorio)

FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRONICA

ſ	4	J	Matriz	Jacobiar	na de	Realiza las derivadas de potencia	Reconoce la solución	Salida	de	5
			solución	en l	Newton-	activa y reactiva de inyección por	cuadrática de Newton-	resultados	de	(3 Teoría
			Raphson			barras.	Raphson.	flujos	de	2
								potencia.		laboratorio)

	UNIDAD II Método de Dip de Re	actancia sobre resonancia sub-sín	icrona		
	CAPACIDAD: Ca	apacidad de solucionar e	cuaciones.		
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	CONTENIDO ACTITUDINAL	INDICADORES	TOTAL HORAS
5	J Resonancia sub-síncrona	Determina las impedancias y sus ángulos de fase en función de los sub-armónicos	Entiende y valora los riesgos de resonancia sub-síncrona de turbinas a vapor.	Grafica reactancias y resistencias vistas por barras.	5 (3 Teoría 2 laboratorio)
6	J Resonancia armónica	Determina los picos y ceros de impedancia de barras.	Entiende los puntos de resonancia paralela (picos) y de resonancia serie (ceros),	Soluciona los riesgos de resonancia armónica del sistema de potencia.	5 (3 Teoría 2 laboratorio)
7	Frecuencia natural de transformadores de potencia	Analiza las inflexiones de la impedancia en función de la frecuencia	Entiende y valora los posibles desplazamientos de bobinas ó defectos de bobinas	Desarrolla archivos Excel comparativos.	5 (3 Teoría 2 laboratorio)
8	Examen Parcial				

	UNIDAD III: Confiabilidad y CAPACIDAD: Para re	Calidad de energía solver problemas.			
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	INDICADORES	TOTAL HORAS
9	J Regulación de tensión en el circuito eléctrico	Diseño de taps bajo carga de transformadores de potencia	Desarrolla el Line- Droop Compensation en líneas radiales.	Obtiene la mitigación de regulación de tensión	5 (3 Teoría 2 laboratorio)
10	Control de potencia reactiva del sistema de potencia	Diseña transformadores fase cuadratura.	Desarrolla cambios de potencia reactiva bidireccionales.	Obtiene mejor regulación de tensión de barras	5 (3 Teoría 2 laboratorio)
11	J Incrementada cargabilidad de transformadores de potencia en grandes altitudes	Realiza procedimientos operativos	Desarrolla Lógicas que permiten sobrecargas del equipo.	Obtiene curvas Corriente-tiempo de operación del transformador	5 (3 Teoría 2 laboratorio)
12	Diseño y análisis de Convertidores de fuentes de tensión sobre transmisión de sistemas de potencia	Determina las máximas transferencias entre sistemas interconectados.	Desarrolla capacidades blackstart de plantas de energía eléctrica.	Obtiene flujos de potencia bi- direccionales	5 (3 Teoría 2 laboratorio)

	UNIDAD IV: SIMULACIÓN DE SISTEMAS ELÉCTRICOS Y ELECTRÓNICOS							
	CAPACIDAD:							
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD APRENDIZAJE	DE	INDICADORES	TOTAL HORAS		

FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRONICA

13	J Impactos de armónicos relacionados sobre centrales eólicas y sistemas fotovoltaicas.	Aplica la metodología en la solución de problemas.	Solucionas problemas de mitigación de armónicos	Filtros de armónicos.	4 (2 Teoría 2 laboratorio)
14	Análisis de desempeño de armónicos en Compensadores Estáticos de Tensión.	Aplica a modelos TCR, TSC y MCS	Obtiene características de operación de mínima y máxima demanda.	Regulación fina de tensión y respuesta rápida de regulación.	5 (3 Teoría 2 laboratorio)
15) Costos incrementales de barras.	Analizar los precios de barras	Simula factores de penalización	Costos económicos del sistema de potencia	5 (3 Teoría 2 laboratorio)
16	Examen Final			,	,
17	Examen Sustitutorio				

V. ESTRATEGIAS METODOLOGICAS

Método Expositivo – Interactivo. Disertación docente, participación activa del estudiante.

Método de Demostración – Ejecución. El docente aplica la metodología, ejecuta para demostrar cómo se desarrolla y el estudiante ejecuta, para validar lo aprendido.

VI. MATERIALES EDUCATIVOS Y OTROS RECURSOS DIDACTICOS:

Se expondrá aspectos conceptuales y comandos del entorno de programación del curso con el uso del proyector. Se resolverá problemas de aplicación de en la pizarra acrílica. Se resolverá problemas y se verificara su respuesta mediante el desarrollo de programas de aplicación. Se hará uso de la computadora con software como Matlab. En el laboratorio se implementa y analiza programas.

VII. EVALUACION DEL APRENDIZAJE

La evaluación del alumno se realizara con el tipo 4, la cual se indica por la fórmula:

$$P = \frac{E + E + P}{3}$$

PL = promedio de prácticas de laboratorio

EP = examen parcial

EF = examen final

PF = promedio final del curso

IMPORTANTE:

La asistencia a las prácticas de laboratorio es obligatoria. La nota mínima aprobatoria es 11. El examen sustitutorio reemplaza a la nota más baja del examen parcial o examen final.

VIII. FUENTES DE CONSULTA

Nota: Precisar las Fuentes de Información: bibliográficas, hemerográficas y cibernéticas.

Bibliográficas

Manuales DigSilent Power Factory
 Manuales Power Technology Incorporated-PTI
 B.M. weedy. "sistemas electricos de gran potencia". reverté.
 Charles a. gross "analisis de sistemas de potencia" interamericana.1982.
 D.P. Kothari- i.j. Nagrath. "sistemas eléctricos de potencia" mcgraw-hill, tercera edición 2008.

FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRONICA

EVALUACIÓN

EPL Evaluación práctica de laboratorio 2 TIF Informe individual de resp social 1 IIRS Informe individual de resp social 1	5%
TIF Informe individual de resp social 1 IIRS Informe individual de resp social 1	5%
IIRS Informe individual de resp social 1	0%
·	5%
	5%
TOTAL 1	00%